Ad

Tuesday, March 21, 2017

Udacity Machine Learning Nanodegree - Projects Step by Step Walkthrough High Level Cheat Sheet

High level steps to solve Udacity Machine Learning Nanodegree projects:

  • Import dependencies: numpy, pandas, sklearn, matplotlib
  • Data cleaning:
    • Replace all data with numeric value such as binaries 0 and 1 or scale down to between -1 to 1, or 0 to 1 (normalization). 
    • Replace yes/no binary answers with 1,0
    • Replace categorical data A, B, C with dummy columns |A|B|C| use 1 if true, 0 if false
  • Split data into features and target aka label
  • Perform initial exploration, turns data CSV into Pandas.DataFrame
    • Computer summary stats: mean, counts etc.
  • from sklearn import model
  • clf = sklearnmodel.model() #specify the classifier
  • clf.fit( ... ) #fit the model wither parameters
  • clf.predict() #make predictions
  • Metrics:
    • R^2 R squared - great for linear regression 0 to 1, 1 being the best
  • Errors:
  • This list is under construction

Sklearn machine learning model cheat sheet
What are the best algorithms to use for each machine learning problem?
Classification versus regression
Supervised versus unsupervised

No comments:

Post a Comment

Amazon Alexa 101 - How to make your first app

Code helloworld app using Amazon Alexa. Make your first voice search, voice assistant app. Amazon Alexa app making for dummies. Learn to cod...