Ad

Tuesday, March 21, 2017

Udacity Machine Learning Nanodegree - Projects Step by Step Walkthrough High Level Cheat Sheet

High level steps to solve Udacity Machine Learning Nanodegree projects:

  • Import dependencies: numpy, pandas, sklearn, matplotlib
  • Data cleaning:
    • Replace all data with numeric value such as binaries 0 and 1 or scale down to between -1 to 1, or 0 to 1 (normalization). 
    • Replace yes/no binary answers with 1,0
    • Replace categorical data A, B, C with dummy columns |A|B|C| use 1 if true, 0 if false
  • Split data into features and target aka label
  • Perform initial exploration, turns data CSV into Pandas.DataFrame
    • Computer summary stats: mean, counts etc.
  • from sklearn import model
  • clf = sklearnmodel.model() #specify the classifier
  • clf.fit( ... ) #fit the model wither parameters
  • clf.predict() #make predictions
  • Metrics:
    • R^2 R squared - great for linear regression 0 to 1, 1 being the best
  • Errors:
  • This list is under construction

Sklearn machine learning model cheat sheet
What are the best algorithms to use for each machine learning problem?
Classification versus regression
Supervised versus unsupervised

1 comment:

  1. Regarding rv solar panels some others, this challenge of unsecured debt will not be their mistake, yet can come because of the redundancy, disorder, et https://royalcbd.com/how-to-make-cbd-gummies-at-home/

    ReplyDelete

Developing apps for airtable using Airtable Blocks

The airtable smart sheets now has an app platform called Airtable Blocks, which allows developers to add custom code, and build apps quickly...