Ad

Thursday, February 20, 2020

My experience with TripleByte technical interview and quiz

I read a few really good posts on TripleByte experience. They were helpful so I am also posting my two cents here.

First of all, TripleByte is legit. It went through Y Combinator and it is being actively promoted by YC.

Amazing selection of quizzes:
I am so happy that they have full stack, data science as well as Machine Learning quizzes as of Feb 2020! The Data Science and Machine Learning Quizzes both have a NEW sign.

It is about 2 minutes per question.

I really like the FastTrack feature. It is a quick validation. It is encouraging and it quickly moves candidates to the next step  : actually doing or practicing technical interviews. Honestlly this part is not avoidable.

I haven't figured out a way to take other quizzes when passing one with FastTrack.

It is not very hard for me to get FastTrack or well but if I can get exceptionally well, then it is rarer and more meaningful, and there may even be an opportunity to be matched with top companies and opportunities. I don't think the Exceptionally Well is exactly trivial to obtain. TripleByte visualizes your skill set with sub categories that either has a scale of 1-5 rating or a radar map with similar scale. But one does not want to score a 3 in any of the sub categories - visually it makes the radar map looks weak.

With a little a bit of review and brief study, the quizzes should be easily passable. If you don't pass the quiz, may be it is time to learn more and get more experience, because it is not that hard to pass it.

From most of what I gathered online in forums, the technical interview portion is difficult. There is quite a bit of requirement in coding exercises and setting up the coding environment in the console. Because I come from a non-traditional background, I don't know C++ ... yet. I plan to learn it. Some of the exercises, quizzes and interview questions can be in C++. And that's a problem for me. The quiz C++ is easy to figure out even if you don't know the language. But the coding exercise in C++ cannot be figured out without prior knowledge.

Apparently you will be sent an interview guide if you do schedule a technical interview.

One trick to do well in technical interview is to have practiced the problem, then you will know the caveat, and won't stress to understand the problem (comprehension), and potentially know roughly what the optimal solution look like.

During the interview, it'd be good to think of a similar problem that you resolved and recall how you resolved it. Being able to discuss the problem in a real world setting is always helpful for finding optimal solution and also showcase your understanding of the technical problem.

How does TripleByte compare to HackerRank and Leetcode

TripleByte is more developer-friendly and better for candidates than HackerRank and Leetcode. Because first of all, it tests knowledge more than trivia. As long as you understand the problem, you likely can resolve the question fast, within 2 minutes (the requirement). It focuses one or two missing line, or the final returned result. This means you won't have to spend 45 minutes to conjure each solution. I like that a lot. I can demonstrate I understand the problem and its edge cases without having to get very detail right. 

Leetcode is more detailed, and there is a lot of competition for time performance, even a good solution may not be enough. HackerRank has a nice trajectory to level up, and is interesting, but like Leetcode it also requires the candidate to write a lot of code every time. Though eventually, you should probably still use HackerRank or Leetcode to prepare for the screenshared interview - first round. 

HackerRank supports a few choices of languages. TripleByte lets you choose category of your quiz but there no explicit language choice. Leetcode supports many languages. 

No comments:

Post a Comment

Regularization in Machine Learning, Deep Learning

Regularization can prevent overfitting and potentially make algorithm converge faster and more performant. Useful in deep learning tasks, in...