Saturday, March 2, 2019

Pytorch Cheatsheet for beginners

train_loader, test_loader in python code pattern

train_loader =, batch_size=batch_size, num_workers=num_workers)
test_loader =, batch_size=batch_size, num_workers=num_workers)

Pytorch dataloader helps load data in batches such as images.

Flavors of Pytorch Model Initialization


import torch.nn as nn
import torch.nn.functional as F

Object Oriented OOP

class Autoencoder(nn.Module):
    def __init__(self, encoding_dim):
        super(Autoencoder, self).__init__()
        ## encoder ##
        ## decoder ##

    def forward(self, x):
        # define feedforward behavior 
        # and scale the *output* layer with a sigmoid activation function
        return x

Best Practice:
Pytorch do sanity check load checkpoint and make sure everything worked. Imshow() the output image make sure it is the desired output. Do sanity check, visual check.


Developing apps for airtable using Airtable Blocks

The airtable smart sheets now has an app platform called Airtable Blocks, which allows developers to add custom code, and build apps quickly...