Ad

Saturday, March 2, 2019

Pytorch Cheatsheet for beginners

train_loader, test_loader in python code pattern

train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=num_workers)
test_loader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers)

Pytorch dataloader helps load data in batches such as images.

Flavors of Pytorch Model Initialization

Functional

import torch.nn as nn
import torch.nn.functional as F

Object Oriented OOP

class Autoencoder(nn.Module):
    def __init__(self, encoding_dim):
        super(Autoencoder, self).__init__()
        ## encoder ##
        
        ## decoder ##
        

    def forward(self, x):
        # define feedforward behavior 
        # and scale the *output* layer with a sigmoid activation function
        
        return x

Best Practice:
Pytorch do sanity check load checkpoint and make sure everything worked. Imshow() the output image make sure it is the desired output. Do sanity check, visual check.

1 comment:

React UI, UI UX, Reactstrap React Bootstrap

React UI MATERIAL  Install yarn add @material-ui/icons Reactstrap FORMS. Controlled Forms. Uncontrolled Forms.  Columns, grid